Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humboldt Research Award for Nobel Laureate Aaron Ciechanover - Host Institution is the MDC

07.12.2011
The Israeli Nobel Laureate Aaron Ciechanover has been named one of the recipients of the Humboldt Research Award of the Alexander von Humboldt Foundation (AvH). His host institution in Germany shall be the Max Delbrück Center (MDC) in Berlin, a member of the Helmholtz Association.

Professor Ciechanover is a physician and biologist and conducts research at the Technion – Israel Institute of Technology in Haifa. AvH in Germany awards this prize to internationally renowned scientists and scholars in recognition of their entire achievements to date, and whose fundamental discoveries, theories, or insights have had a significant impact on their discipline. The award is valued at 60,000 euros.

At the MDC Professor Ciechanover will cooperate in particular with the research group led by Professor Thomas Sommer. There he will work in joint projects on the disposal of misfolded proteins. This cooperation will enable the MDC to intensify its contacts with Israeli scientists and in particular with the Technion.

Professor Ciechanover is one of the discoverers of the ubiquitin-proteasome system for regulated protein degradation. One of the main functions of the system is waste disposal. In 2004 he shared the Nobel Prize in Chemistry for this discovery with Avram Hershko and Irwin Rose. This quality control maintenance system selectively disposes misfolded/denatured/inactive proteins that, if accumulated, can cause cellular damage. Thus, only proteins that are marked with ubiquitin are recognized and enter the proteasome, the molecular shredder of the cell. There they are chopped into pieces and degraded. Ubiquitin, as the name (ubiquitous) implies, is present in all eukaryotic (nucleated) cells.

Aberrations in this cellular waste disposal machinery can lead to a wide array of diseases, ranging from cancer to neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, genetic diseases such as cystic fibrosis, and disorders of the immune system. The research on the ubiquitin-proteasome system and the identification of the components involved in the degradation of key proteins has already led to the development of a new cancer drug. Aaron Ciechanover is convinced that this research will lead to the development of many additional drugs that will selectively target only proteins that are involved in a specific disease process.

Aaron Ciechanover was born in Haifa, Israel in 1947. He received his MD degree from Hebrew University of Jerusalem in 1975, and his PhD in Biology from Technion in 1982. He is currently Distinguished Professor at the Cancer and Vascular Biology Research Center in the Rappaport Research Institute and Faculty of Medicine, Technion – Israel Institute of Technology. Prior to receiving the Nobel Prize he was a recipient of the 2000 Albert Lasker Award and the 2003 Israel Prize. He is a member of the Israeli Academy of Sciences and Humanities, and the National Academy of Sciences of the USA (Foreign Member).

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.technioncancer.co.il/ResearchGroups.php
http://www.mdc-berlin.de/

More articles from Awards Funding:

nachricht IHP Project reaches Final Round of European Innovation Radar Prize
22.09.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht DFG funds new research project on seagrass and macroalgae ecosystems in the tropics with €400,000
12.09.2016 | Leibniz-Zentrum für Marine Tropenökologie (ZMT)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>