Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-Michigan Ecologists: No Magic Bullet for Coffee Rust Eradication

24.01.2014
Spraying fungicide to kill coffee rust disease, which has ravaged Latin American plantations since late 2012, is an approach that is "doomed to failure," according to University of Michigan ecologists.

Instead, management practices focused on maintaining the complex web of ecological interactions among coffee plantation organisms—including insects, fungi, plants, birds and bats—are much more likely to succeed in the long run, according to the U-M researchers, who provide an overview of the recent Latin American coffee rust epidemic in a paper published online Jan. 22 in the journal BioScience.

Coffee rust is a fungus, but spraying fungicides to kill it may inadvertently destroy natural fungal enemies of coffee rust that help to keep it in check.

And the ongoing abandonment of traditional shade-growing techniques, in which coffee is grown beneath a canopy of trees, likely reduces the diversity and abundance of beneficial insects and opens the plantations to winds that help disperse coffee rust spores, according to U-M ecologist John Vandermeer and his co-authors, Ivette Perfecto and Doug Jackson.

"Small, seemingly trivial changes in environmental conditions can generate dramatic shifts in the underlying dynamics of the disease," the researchers wrote. "The techniques of so-called modernization (e.g., cutting shade, applying fungicides) may gradually eliminate what has been effectively autonomous biological control" of coffee rust.

"A movement back toward more shaded systems, with minimal application of agrochemicals, might be an appropriate recommendation for coffee farmers in the region."

Vandermeer is a professor in the Department of Ecology and Evolutionary Biology and at the School of Natural Resources and Environment. Perfecto is a professor at SNRE. Jackson was a U-M graduate student when much of the research was done and now works at the U.S. National Oceanic and Atmospheric Administration.

Vandermeer and Perfecto have operated research plots at an organic coffee plantation in southern Chiapas, Mexico, for about 16 years. Last year, more than 60 percent of the coffee plants there experienced more than 80 percent defoliation due to coffee rust fungus, and nearly 9 percent of the plants died.

The recent coffee rust epidemic damaged plantations from Mexico to Peru, and applying fungicide is one of the main control methods promoted in the affected countries. But generalized fungicides can also kill the white halo fungus, which is known to attack coffee rust.

If conventional disease control methods alone are used to address the coffee rust problem, the disease may prove to be intractable in Latin America, according to the authors. It's even possible that coffee rust will maintain its epidemic status indefinitely in the region, though additional research would be required to determine if that is likely to happen.

Coffee rust "threatens the livelihoods of millions of farmers and will potentially distort the economies of many of the world's most vulnerable nations," according to Vandermeer and his colleagues. "It is reasonable to suggest that the situation calls for a revitalization of what pest control specialists have come to call 'autonomous pest control.'"

Jim Erickson | Newswise
Further information:
http://www.umich.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>